6 de Noviembre de 2025

logo
Planeación estratégica

Cómo aplicar modelos de regresión logística en la gestión de inventarios

Los modelos de regresión logística se han convertido en una herramienta invaluable
Redacción TLW®

Compartir

La gestión de inventarios juega un papel crucial. Administrar adecuadamente el inventario no solo significa tener el producto correcto en el lugar correcto en el momento adecuado, sino también minimizar los costos asociados con el almacenamiento y la pérdida de ventas debido a la falta de stock.

En este contexto, los modelos predictivos como la regresión logística son herramientas esenciales, permitiendo a las empresas prever la demanda y ajustar sus estrategias de inventario de manera más efectiva, ofrece una metodología robusta para predecir eventos binarios, como:

  • La probabilidad de que un producto se agote o no, basándose en variables históricas y predictivas

Esta capacidad para anticipar la demanda futura es invaluable, especialmente en industrias donde los márgenes de error son estrechos y las consecuencias de un exceso o falta de inventario pueden ser costosas.

Diferencias clave de la regresión logistica con la regresión lineal

Naturaleza de la variable dependiente:

Mientras que la regresión lineal maneja variables continuas, la regresión logística se utiliza para variables binarias o categóricas.

Función de enlace:

La regresión lineal utiliza la identidad como función de enlace, lo que significa que la salida es una combinación lineal de las entradas. En cambio, la regresión logística utiliza la función logística para vincular las predicciones con las probabilidades.

Beneficios de implementar modelos de regresión logística en la gestión de inventarios:

La implementación de modelos de regresión logística en la gestión de inventarios ofrece ventajas significativas, convirtiéndola en una herramienta indispensable para las empresas que buscan optimizar sus operaciones logísticas, como:

  • Reducción de roturas de stock: Los modelos de regresión logística pueden predecir con precisión la demanda futura, permitiendo a las empresas ajustar los niveles de inventario de manera eficiente, evitando las costosas roturas de stock y los clientes insatisfechos.
  • Optimización de los niveles de inventario: Al predecir la demanda con mayor precisión, las empresas pueden mantener niveles de inventario óptimos, reduciendo los costos de almacenamiento y minimizando el riesgo de obsolescencia.
  • Mejora en la toma de decisiones: Los modelos de regresión logística proporcionan información valiosa para la toma de decisiones estratégicas, permitiendo a las empresas identificar tendencias de mercado, anticipar cambios en la demanda y ajustar sus estrategias de inventario en consecuencia.

Relacionado: Interpretando modelos de regresión logística para análisis predictivo de demanda

Consideraciones en la implementación de modelos

Para una implementación exitosa, es importante considerar algunos aspectos clave:

  • Calidad de los datos: La precisión de los modelos depende en gran medida de la calidad de los datos históricos utilizados para su entrenamiento. Es fundamental contar con datos completos, precisos y consistentes.
  • Selección de variables: La elección adecuada de las variables que se incluirán en el modelo es crucial para obtener predicciones precisas. Se deben considerar factores como el historial de ventas, la estacionalidad, las tendencias del mercado y las promociones.
  • Evaluación y seguimiento: Es importante evaluar continuamente el rendimiento del modelo y realizar ajustes periódicos para mantener su precisión a medida que cambian las condiciones del mercado.

Paso a paso: Cómo aplicar modelos de regresión logística en la gestión de inventarios

La aplicación práctica de la regresión logística en la gestión de inventarios involucra varios pasos críticos, desde la preparación de los datos hasta la implementación y revisión del modelo.

Preparación de los datos

  1. Selección de datos: Identificar las variables relevantes que pueden influir en la demanda, como ventas pasadas, datos demográficos, condiciones económicas, entre otros.
  2. Limpieza de datos: Eliminar o corregir datos erróneos o incompletos, que podrían distorsionar los resultados del modelo.

Creación del modelo

  1. Definición de variables: Determinar cuáles variables actuarán como independientes (predictores) y cuál será la dependiente (evento de interés).
  2. Configuración del modelo: Establecer los parámetros del modelo, incluyendo la tasa de aprendizaje, el número de iteraciones, entre otros.

Entrenamiento y validación

  1. Entrenamiento del modelo: Utilizar los datos históricos para entrenar el modelo, ajustando los coeficientes para minimizar errores.
  2. Validación del modelo: Comparar las predicciones del modelo contra un conjunto de datos de prueba para evaluar su precisión y ajustar según sea necesario.

A medida que la tecnología avanza y los datos se vuelven más accesibles, la aplicación de modelos predictivos como la regresión logística seguirá siendo un componente crítico en la estrategia de gestión de inventarios de cualquier empresa.


Redacción TLW®

Equipo editorial de THE LOGISTICS WORLD®, conformado por periodistas especializados en la industria del transporte, supply chain, manejo de almacenes y tecnologías logísticas.

Relacionadas

Planeación estratégica

La transición energética corre sobre infraestructura logística

La regulación energética también es un habilitador para el movimiento de la supply chain

Premium Notes Logo

Solo Suscriptores

Planeación estratégica

3 lecciones clave para transformar la cadena de suministro, sin detener operación

Continuidad, agilidad y resiliencia: fundamentos para una integración tecnológica exitosa

Premium Notes Logo

Solo Suscriptores

Las más leídas

Camilo Mora

Logística y distribución

VIDEOPODCAST, E10: Nanostores, puntos clave en la distribución 

Episodio con Camilo Mora: valiosos insights para el impulso logístico del canal tradicional 

Transporte

El robo al transporte de carga diversifica los puntos de ataque, pero no de mercancías

La cadenas de suministro industriales enfrentan un escenario de riesgo dinámico y sofisticado

Premium Notes Logo

Solo Suscriptores

Transporte

Lo que debes saber del nuevo estándar para el transporte de combustible

Para combatir el robo y comercialización ilícita de gasolina y diésel, hay nuevas reglas

Premium Notes Logo

Solo Suscriptores

transporte-entrevista-profesionalizacion

Transporte

De cómo la falta de profesionalización amenaza la rentabilidad de la industria de transporte

Las pymes del transporte enfrentan riesgos por operar sin estrategia ni formación empresarial

Premium Notes Logo

Solo Suscriptores

formula-1-mexico-cdmx-carrera

Planeación estratégica

Operación Gran Premio de México: la logística detrás del paddock de F1 en CDMX

El detrás de escena de la operación que convierte al Autódromo en una ciudad itinerante

Premium Notes Logo

Solo Suscriptores

Lo último

Puerto Lázaro Cárdenas Michoacán

Actualidad logística

Seguridad bajo presión en Lázaro Cárdenas, el nodo clave del comercio Pacífico-Asia

El control del puerto ha sido disputado por el crimen organizado para ampliar su poder en Michoacán

Amazon y Rappi se unen para lanzar Amazon Now.

Actualidad logística

Así es como Amazon Now apuesta por redefinir la inmediatez de entregas

Dos de las empresas de ecommerce más importantes en México se unen para innovar el delivery.

Actualidad logística

Ruptura Perú–México reconfigura el tablero logístico de la Alianza del Pacífico

Las tensiones pondrían en riesgo acuerdos y la competitividad del bloque frente a Asia